Deep Learning
Applications



Syllabus & Reference

Computer vision, Speech Recognition, Natural Language Processing,
Decision Making process.

Reference:

Deep Learning (Adaptive Computation and Machine Learning series),
* lan Goodfellow , Yoshua Bengio, Aaron Courville,

Francis Bach, 2017, MIT Press



Large Scale Deep Learning
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Fast Implementations

- CPU

. Exploit fixed point arithmetic in CPU families where this offers a speedup

* Cache-friendly implementations

- GPU

- High memory bandwidth
- No cache

* Warps must be synchronized

- TPU

* Similar to GPU in many respects but faster
 Often requires larger batch size

* Sometimes requires reduced precision



Distributed Implementations

* Distributed
* Multi-GPU
* Multi-machine
* Model parallelism
* Data parallelism
* Triwvial at test time

* Synchronous or asynchronous SGD at train time



Synchronous SGD

# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%sd' % 1i):
with tf.name_scope('%s_%d' % (cifarl@.TOWER_NAME, 1)) as scope:
# Dequeues one batch for the GPU
image_batch, label_batch = batch_queue.dequeue()
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope, image_batch, label_batch)

# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()

# Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)

# Keep track of the gradients across all towers.
tower_grads.append(grads)

# We must calculate the mean of each gradient. Note that this is the

# synchronization point across all towers.
grads = average_gradients(tower_grads)

TensorFlow tutorial
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Model Compression

* Large models often have lower test error
* Very large model trained with dropout

* Ensemble of many models

- Want small model for low resource use at test time

* Tramn a small model to mimic the large one

* Obtains better test error than directly training a
small model



Quantization

Model Size Comparison

200 Original
Optimized

150

Important for

Model Size (MB)
o

mobile
* deployment

MobileNet_v1 ResNet_v2_101 Inception_v3
3.9x% smaller 4.0x smaller 4.0x smaller
Network

(TensorFlow Lite)




Dynamic Structure: Cascades

All sub-windows

(Viola_and Jones, 2001)




Dynamic Structure
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Dataset Augmentation

for Computer Vision

Affine :
Noise Elastic

Distortio Deformatio

*Horizont Random

, ~ Hue Shaft
al flip Translatio

i t -
i




(Generative
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Graphics

(Table bv Aug‘ustus Odena)

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

Brock et al
2018



Video Generation

Pose-to-Body Results

(Wang et al, 2018)
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Model- Based Optimization

Employed training data
Generated data

Counts (normalized)
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Oracle scores of sequences

(Killoran et al, 2017)



Designing Physical Objects

opposing jaw technician technician’s design

& '
e regression
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3 adversarial
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statistical feature

(Hwang et al 2018)



Attention Mechanisms

Q

)

Figure 12.6
Important 1n many vision, speech, and NLP applications

Improved rapidly atter the book was written



Attention for Images

Attention mechanism from Wang
et al 2018

Image model from Zhang et al

CNTN 4 NN



Generating Training Data

(Bousmalis et al, 2017)



Grasp Success in the Real World
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(Bousmalis et al, 2017)
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Natural Language Processing

* An 1important predecessor to deep NLP 1s the
tamily of models based on n-grams:

P(x1,...,%x1)=P(x1,...,Xn-1) P(xt| Xe-n+1,..., Xe-1). (12.5)
t=n

P (THE DOG RAN AWAY) = P3(THE DOG RAN)P;(DOG RAN AWAY)/P»(DOG
RAN).
(12.7)

Improve with:
-Smoothing
-Backoff

-Word categories



Word Embeddings in
Neural Language
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High-Dimensional Output
Layers for Large

Vocabularies
- Short list

* Hierarchical softmax
* Importance samphng

* Noise contrastive estimation



A Hierarchy of Words
and Word
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Neural Machine Translation

Output object (English
sentence)

Decoder Infermediate, semantic

representation

Encoder

Source object (French sentence
orimage)

Figure 12.5



Google Neural Machine Translation
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Spele Speech Recognition

% Ya Yi (eos) Grapheme characters y; are
t t 1 modelled by the

CharacterDistribution

—

Current speech

S recognition 1s based on

AttentionContext creates

gggtg?&t vector ¢; irom . .
f seq2seq with attention

Long input sequence x is encoded with the pyramidal
BLSTM Listen into shorter sequence h
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Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input

sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.



Speech Synthesis

Output
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Hidden Layer
Dilation = 4
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Input

WaveNet
(van den Oord et al, 2016)



Deep RL for Atari game playing
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Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

(Mnih et al 2013)

Convolutional network estimates
the value function (future

rewards) used to guide the game-
(Note: deep RL didn’t really exist WheIl we started the book,

became a success while we were Wmtglggllty&%%n%lg Egtl %dpic by the time the book was printed)



Superhuman Go Performance

Monte Carlo tree search, with convolutional networks for value function and policy

Selection b  Expansion c Evaluation d Backup
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a, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on

a stored prior probability P for that edge. b, The leaf node may be expanded; the new node is processed once by the policy

network p, and the output probabilities are stored as prior probabilities P for each action. ¢, At the end of a simulation, the

leaf node is evaluated in two ways: using the value network vg; and by running a rollout to the end of the game with the fast

rollout policy py, then computing the winner with function r. d, Action values Q are updated to track the mean value of all

evaluations r(-) and vg(') in the subtree below that action.

(Silver et al. 2016)




(Google Brain)



Mild/Moderate Proliferative

(Google Brain)
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